Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses
- PMID: 10516074
- PMCID: PMC113000
- DOI: 10.1128/JVI.73.11.9625-9631.1999
Molecular characterization of a porcine enteric calicivirus genetically related to Sapporo-like human caliciviruses
Abstract
Porcine enteric calicivirus (PEC) is associated with diarrhea in pigs, and to date it is the only cultivable enteric calicivirus (tissue culture-adapted [TC] PEC/Cowden). Based on sequence analysis of cDNA clones and reverse transcription-PCR products, TC PEC/Cowden has an RNA genome of 7,320 bp, excluding its 3' poly(A)(+) tail. The genome is organized in two open reading frames (ORFs), similar to the organizations of the human Sapporo-like viruses (SLVs) and the lagoviruses. ORF1 encodes the polyprotein that is fused to and contiguous with the capsid protein. ORF2 at the 3' end encodes a small basic protein of 164 amino acids. Among caliciviruses, PEC has the highest amino acid sequence identities in the putative RNA polymerase (66%), 2C helicase (49.6%), 3C-like protease (43.7%), and capsid (39%) regions with the SLVs, indicating that PEC is genetically most closely related to the SLVs. The complete RNA genome of wild-type (WT) PEC/Cowden was also sequenced. Sequence comparisons revealed that the WT and TC PEC/Cowden have 100% nucleotide sequence identities in the 5' terminus, 2C helicase, ORF2, and the 3' nontranslated region. TC PEC/Cowden has one silent mutation in its protease, two amino acid changes and a silent mutation in its RNA polymerase, and five nucleotide substitutions in its capsid that result in one distant and three clustered amino acid changes and a silent mutation. These substitutions may be associated with adaptation of TC PEC/Cowden to cell culture. The cultivable PEC should be a useful model for studies of the pathogenesis, replication, and possible rescue of uncultivable human enteric caliciviruses.
Figures



References
-
- Bridger J C. Small viruses associated with gastroenteritis in animals. In: Saif L J, Theil K W, editors. Viral diarrheas of man and animals. Boca Raton, Fla: CRC Press; 1990. pp. 161–182.
-
- Carter M J, Milton I D, Meanger J, Bennett M, Gaskell R M, Turner P C. The complete nucleotide sequence of a feline calicivirus. Virology. 1992;190:443–448. - PubMed
-
- Clarke I N, Lambden P R. The molecular biology of caliciviruses. J Gen Virol. 1997;78:291–301. - PubMed
-
- Dingle K E, Lambden P R, Caul E Q, Clarke I N. Human enteric Caliciviridae: the complete genome sequence and expression of virus-like particles from a genetic group II small round-structured virus. J Gen Virol. 1995;76:2349–2355. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources