Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Sep;54(3):185-94.
doi: 10.1034/j.1399-3011.1999.00120.x.

Extending the concept of template-assembled synthetic proteins

Affiliations
Review

Extending the concept of template-assembled synthetic proteins

G Tuchscherer et al. J Pept Res. 1999 Sep.

Abstract

The creation of native-like macromolecules in copying nature's way represents a fascinating challenge in protein chemistry today. In the absence of a detailed knowledge of the complex folding pathway the ultimate goal in protein de novo design, the construction of artificial proteins with predetermined three-dimensional structure and tailor-made functions based on a defined, generally valid set of rules, appears to be still out of reach. With progress in synthesis strategies and biostructural characterization methods, topological templates have become a versatile tool for inducing and stabilizing secondary and tertiary structures, such as protein loops, beta-turns, alpha-helices, beta-sheets and a variety of folding motifs. In this article, we extend the concept of template-assembled synthetic proteins for the construction of protein-like topologies with multiply bridged, oligocyclic chain architectures termed locked-in tertiary folds that exhibit unique physicochemical and folding properties because of the highly confined conformational space. Furthermore, we show that some fundamental questions in protein assembly can be approached applying the template concept. Using covalent template trapping of self-associated peptide assemblies in aqueous solution the structural and physical forces guiding protein folding, supramolecular assembly and molecular recognition processes can be studied on a molecular level.

PubMed Disclaimer

LinkOut - more resources