Predicting variability in biological control of a plant-pathogen system using stochastic models
- PMID: 10518323
- PMCID: PMC1690196
- DOI: 10.1098/rspb.1999.0841
Predicting variability in biological control of a plant-pathogen system using stochastic models
Abstract
A stochastic model for the dynamics of a plant-pathogen interaction is developed and fitted to observations of the fungal pathogen Rhizoctonia solani (Kühn) in radish (Raphanus sativus L.), in both the presence and absence of the antagonistic fungus Trichoderma viride (Pers ex Gray). The model incorporates parameters for primary and secondary infection mechanisms and for characterizing the time-varying susceptibility of the host population. A parameter likelihood is developed and used to fit the model to data from microcosm experiments. It is shown that the stochastic model accounts well for observed variability both within and between treatments. Moreover, it enables us to describe the time evolution of the probability distribution for the variability among replicate epidemics in terms of the underlying epidemiological parameters for primary and secondary infection and decay in susceptibility. Consideration of profile likelihoods for each parameter provides strong evidence that T. viride mainly affects primary infection. By using the stochastic model to study the dependence of the probability distribution of disease levels on the primary infection rate we are therefore able to predict the effectiveness of a widely used biological control agent.
Similar articles
-
Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease.J R Soc Interface. 2007 Oct 22;4(16):865-77. doi: 10.1098/rsif.2007.1036. J R Soc Interface. 2007. PMID: 17638651 Free PMC article.
-
Bayesian analysis of botanical epidemics using stochastic compartmental models.Proc Natl Acad Sci U S A. 2004 Aug 17;101(33):12120-4. doi: 10.1073/pnas.0400829101. Epub 2004 Aug 9. Proc Natl Acad Sci U S A. 2004. PMID: 15302941 Free PMC article.
-
Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani.J Microbiol Biotechnol. 2008 Sep;18(9):1537-43. J Microbiol Biotechnol. 2008. PMID: 18852509
-
Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro.Microb Pathog. 2012 Apr;52(4):201-5. doi: 10.1016/j.micpath.2012.01.001. Epub 2012 Jan 12. Microb Pathog. 2012. PMID: 22261114
-
Translational research on Trichoderma: from 'omics to the field.Annu Rev Phytopathol. 2010;48:395-417. doi: 10.1146/annurev-phyto-073009-114314. Annu Rev Phytopathol. 2010. PMID: 20455700 Review.
Cited by
-
Complexity and anisotropy in host morphology make populations less susceptible to epidemic outbreaks.J R Soc Interface. 2010 Jul 6;7(48):1083-92. doi: 10.1098/rsif.2009.0475. Epub 2010 Jan 14. J R Soc Interface. 2010. PMID: 20075039 Free PMC article.
-
Profile likelihood analysis for a stochastic model of diffusion in heterogeneous media.Proc Math Phys Eng Sci. 2021 Jun 30;477(2250):20210214. doi: 10.1098/rspa.2021.0214. Epub 2021 Jun 9. Proc Math Phys Eng Sci. 2021. PMID: 34248392 Free PMC article.
-
Parameter estimation and prediction for the course of a single epidemic outbreak of a plant disease.J R Soc Interface. 2007 Oct 22;4(16):865-77. doi: 10.1098/rsif.2007.1036. J R Soc Interface. 2007. PMID: 17638651 Free PMC article.
-
Heterogeneity in susceptible-infected-removed (SIR) epidemics on lattices.J R Soc Interface. 2011 Feb 6;8(55):201-9. doi: 10.1098/rsif.2010.0325. Epub 2010 Jul 14. J R Soc Interface. 2011. PMID: 20630880 Free PMC article.
-
Regression-based ranking of pathogen strains with respect to their contribution to natural epidemics.PLoS One. 2014 Jan 31;9(1):e86591. doi: 10.1371/journal.pone.0086591. eCollection 2014. PLoS One. 2014. PMID: 24497956 Free PMC article.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources