Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 1;62(1-2):115-27.
doi: 10.1016/s0168-3659(99)00029-2.

Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)

Affiliations

Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)

J E Chung et al. J Control Release. .

Abstract

To achieve a combination of spatial specificity in a passive manner with a stimuli-responsive targeting mechanism, a temperature-responsive polymeric micelle is prepared using block copolymers of (poly(N-isopropylacrylamide-b-butylmethacrylate) (PIPAAm-PBMA)). The micelle inner core formed by self-aggregates of PBMA segments successfully loaded with a drug (adriamycin), and the outer shell of PIPAAm chains played a role of stabilization and initiation of micellar thermo-response. Optimum conditions were investigated for the micelle formation and drug loading into the inner cores in a view of micellar stability and function as drug carriers. Outer shell hydrophilicity that prevents inner core interaction with biocomponents and other micelles can be suddenly switched to hydrophobic at a specific site by local temperature increase beyond the LCST (lower critical solution temperature) (32.5 degrees C). These micelles showed reversible structural changes allowing drug release upon heating/cooling thermal fluctuations through the LCST. Polymeric micelles incorporated with adriamycin showed a dramatic thermo-responsive on/off switching behavior for both drug release and in vitro cytotoxicity according to the temperature responsive structural changes of a micellar shell structure. The reversible and sensitive thermo-response of the micelle opens up opportunities to construct a novel drug delivery system in conjunction with localized hyperthermia.

PubMed Disclaimer

Publication types

LinkOut - more resources