Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 15;85(8):716-22.
doi: 10.1161/01.res.85.8.716.

Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect

Affiliations
Free article

Mechanisms underlying the increase in force and Ca(2+) transient that follow stretch of cardiac muscle: a possible explanation of the Anrep effect

B V Alvarez et al. Circ Res. .
Free article

Abstract

Myocardial stretch produces an increase in developed force (DF) that occurs in two phases: the first (rapidly occurring) is generally attributed to an increase in myofilament calcium responsiveness and the second (gradually developing) to an increase in [Ca(2+)](i). Rat ventricular trabeculae were stretched from approximately 88% to approximately 98% of L(max), and the second force phase was analyzed. Intracellular pH, [Na(+)](i), and Ca(2+) transients were measured by epifluorescence with BCECF-AM, SBFI-AM, and fura-2, respectively. After stretch, DF increased by 1.94+/-0.2 g/mm(2) (P<0.01, n = 4), with the second phase accounting for 28+/-2% of the total increase (P<0.001, n = 4). During this phase, SBFI(340/380) ratio increased from 0.73+/-0.01 to 0.76+/-0.01 (P<0.05, n = 5) with an estimated [Na(+)](i) rise of approximately 6 mmol/L. [Ca(2+)](i) transient, expressed as fura-2(340/380) ratio, increased by 9.2+/-3.6% (P<0.05, n = 5). The increase in [Na(+)](i) was blocked by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA). The second phase in force and the increases in [Na(+)](i) and [Ca(2+)](i) transient were blunted by AT(1) or ET(A) blockade. Our data indicate that the second force phase and the increase in [Ca(2+)](i) transient after stretch result from activation of the Na(+)/H(+) exchanger (NHE) increasing [Na(+)](i) and leading to a secondary increase in [Ca(2+)](i) transient. This reflects an autocrine-paracrine mechanism whereby stretch triggers the release of angiotensin II, which in turn releases endothelin and activates the NHE through ET(A) receptors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources