Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 22;274(43):30950-6.
doi: 10.1074/jbc.274.43.30950.

Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes

Affiliations
Free article

Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes

H Wojtasek et al. J Biol Chem. .
Free article

Abstract

The pheromone-binding protein (PBP) from Bombyx mori was expressed in Escherichia coli periplasm. It specifically bound radiolabeled bombykol, the natural pheromone for this species. It appeared as a single band both in native and SDS-polyacrylamide gel electrophoresis and was also homogeneous in most chromatographic systems. However, in ion-exchange chromatography, multiple forms sometimes appeared. Attempts to separate them revealed that they could be converted into one another. Analysis of the protein by circular dichroism and fluorescence spectroscopy demonstrated that its tertiary structure was sensitive to pH changes and that a dramatic conformational transition occurred between pH 6.0 and 5.0. This high sensitivity to pH contrasted markedly with its thermal stability and resistance to denaturation by urea. There was also no significant change in CD spectra in the presence of the pheromone. The native protein isolated from male antennae displayed the same changes in its spectroscopic properties as the recombinant material, demonstrating that this phenomenon is not an artifact arising from the expression system. This conformational transition was reproduced by interaction of the protein with anionic (but not neutral) phospholipid vesicles. Unfolding of the PBP structure triggered by membranes suggests a plausible mechanism for ligand release upon interaction of the PBP-pheromone complex with the surface of olfactory neurons. This pH-linked structural flexibility also explains the heterogeneity reported previously for B. mori PBP and other members of this class of proteins.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources