Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 1;292(4):931-44.
doi: 10.1006/jmbi.1999.3098.

Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation

Affiliations
Free article

Acquisition of novel catalytic activity by the M1 RNA ribozyme: the cost of molecular adaptation

K B Cole et al. J Mol Biol. .
Free article

Abstract

The ribonucleoprotein RNase P is a critical component of metabolism in all known organisms. In Escherichia coli, RNase P processes a vast array of substrates, including precursor-tRNAs and precursor 4. 5S RNA. In order to understand how such catalytic versatility is achieved and how novel catalytic activity can be acquired, we evolve the M1 RNA ribozyme (the catalytic component of E. coli RNase P) in vitro for cleavage of a DNA substrate. In so doing, we probe the consequences of enhancing catalytic activity on a novel substrate and investigate the cost this versatile enzyme pays for molecular adaptation. A total of 25 generations of in vitro evolution yield a population showing more than a 1000-fold increase in DNA substrate cleavage efficiency (kcat/KM) relative to wild-type M1 RNA. This enhancement is accompanied by a significant reduction in the ability of evolved ribozymes to process the ptRNA class of substrates but also a contrasting increase in activity on the p4.5S RNA class of substrates. This change in the catalytic versatility of the evolved ribozymes suggests that the acquired activity comes at the cost of substrate versatility, and indicates that E. coli RNase P catalytic flexibility is maintained in vivo by selection for the processing of multiple substrates. M1 RNA derivatives enhance cleavage of the DNA substrate by accelerating the catalytic step (kcat) of DNA cleavage, although overall processing efficiency is offset by reduced substrate binding. The enhanced ability to cleave a DNA substrate cannot be readily traced to any of the predominant mutations found in the evolved population, and must instead be due to multiple sequence changes dispersed throughout the molecule. This conclusion underscores the difficulty of correlating observed mutations with changes in catalytic behavior, even in simple biological catalysts for which three-dimensional models are available.

PubMed Disclaimer

MeSH terms

LinkOut - more resources