Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;31(10):1441-7.
doi: 10.1097/00005768-199910000-00013.

Simplified deceleration method for assessment of resistive forces in cycling

Affiliations

Simplified deceleration method for assessment of resistive forces in cycling

R B Candau et al. Med Sci Sports Exerc. 1999 Oct.

Abstract

Purpose: The purpose of this study was to develop and test a simplified deceleration technique for measurement of aerodynamic and rolling resistances in cycling.

Methods: Coast-down tests were performed in level hallways with an experienced cyclist as the rider. Average initial velocities were 2.5-12.8 m x s(-1)) The deceleration technique was simplified by the use on only three switches and a derivation that did not require an assumption that deceleration is constant. The effective frontal area (AC(D)) and coefficient of rolling resistance (CR) were then calculated through a derivation from the equation for resistive forces opposing motion. Method reproducibility was tested by comparison of results for four tests of 30 trials under identical conditions. Method sensitivity was tested by performing 30 trials with three different rider head positions and four different transported mass conditions.

Results: Analysis of variance revealed that there were no differences among the results in the reproducibility study for either AC(D) or C(R). Furthermore, the reproducibility tests revealed mean errors of only 0.66% and 0.70% for AC(D) and CR, respectively. ANOVA identified a significant increase (P < 0.001) in rolling resistance with external loading and a significant effect (P < 0.001) of head position on AC(D). Mean (+/-SD) values for AC(D) and C(R) from tests in a racing aeroposture with the head up, the head in line with the trunk, and the head in an intermediate position were 0.304 +/- 0.011, 0.268 +/- 0.010, and 0.262 +/- 0.013 m2, respectively. C(R) averaged 0.00368 in the three head positions.

Conclusions: The findings indicate that this simplified deceleration technique is satisfactorily reproducible and sensitive for measurement of aerodynamic and rolling resistances in cycling.

PubMed Disclaimer

Publication types

LinkOut - more resources