Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jul;2(1):15-20.
doi: 10.1006/mcbr.1999.0145.

Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum

Affiliations

Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum

P Learngaramkul et al. Mol Cell Biol Res Commun. 1999 Jul.

Abstract

Molecular mechanisms that regulate gene expression during development of asexual stage to sexual stage of Plasmodium falciparum in the human erythrocyte are largely unknown. There were apparent variations in ultrastructural characteristics of the mitochondrion between the two developing stages. The asexual stage's mitochondrion had developed less than that of the sexual stage. The respiratory complexes of the mitochondrial electron transport system in the asexual stage were approximately 8-10 times less active than those in the sexual stage. Using quantitative polymerase chain reaction to amplify the cytochrome b gene encoding a subunit of mitochondrial cytochrome c reductase, the amount of the cytochrome b gene of the sexual stage was calculated to be approximately 3 times higher than that obtained from the asexual stage. Moreover, using quantitative reverse-transcription polymerase chain reaction, a relatively high level of approximately 1.3-kb transcript mRNA of the cytochrome b gene was observed in the sexual stage compared to the asexual stage. A known single-copy chromosomal dihydrofolate reductase gene was found to have a similar amount in the two stages. These results suggest that the copy number of the mitochondrial gene, including transcriptional and translational mechanisms, plays a major regulatory role in differential expression during the development of the asexual to sexual stage of P. falciparum in the human cell.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources