Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;47(4):691-8.
doi: 10.1097/00005373-199910000-00013.

Multiple organ dysfunction after remote circulatory arrest: common pathway of radical oxygen species?

Affiliations

Multiple organ dysfunction after remote circulatory arrest: common pathway of radical oxygen species?

A A Weinbroum et al. J Trauma. 1999 Oct.

Abstract

Objectives: Cardiovascular, respiratory, and vascular dysfunction can follow trauma-induced no-flow-reflow states: hemorrhage, blunt trauma, or neurogenic shock. Liver ischemia-reperfusion (IR) induces remote lung damage by means of xanthine oxidase (XO) pro-oxidant activity. This damage was not proven in the heart, neither was the independent role of radical oxygen species (ROS) established in such cases. We investigated whether multiple organ dysfunction after a trauma-like IR is XO and ROS related and whether clinically used ROS scavengers could be beneficial.

Methods: A controlled, randomized trial in which isolated rat livers, hearts, lungs, and aortic rings were perfused with Krebs-Henseleit solutions. After stabilization, livers were either perfused or made ischemic (2 hours). Then, pairs of liver plus heart, lung, or ring were reperfused in series (15 minutes), and then the second organ circulated alone for 45 minutes. Remote organ protection against the pro-oxidant hepatic-induced toxicity was evaluated by using allopurinol (1 mmol/L, heart), mannitol (0.25 g/kg, lung), or methylene blue (40 mg/kg, ring).

Results: IR liver effluents typically contained high lactate dehydrogenase, XO, and uric acid concentrations compared with control organs. IR was associated with doubled lung peak inspiratory pressure and reduced static compliance. Myocardial velocity of contraction and relaxation decreased by one third of baseline, and rings contracted abnormally and responded inadequately to phenylephrine. Wet-weight to dry-weight ratios in the remote organs increased as well. Most remote reperfusion injuries were attenuated by the drugs.

Conclusion: Liver no-flow-reflow directly induces myocardial, pulmonary, and vascular dysfunction. These are likely mediated by XO and ROS. The tested drugs protected against these pro-oxidants, even in the presence of circulating XO.

PubMed Disclaimer

MeSH terms

LinkOut - more resources