Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 5;38(40):13119-28.
doi: 10.1021/bi9828876.

Kinetic and spectroscopic characterization of the gamma-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila

Affiliations

Kinetic and spectroscopic characterization of the gamma-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila

B E Alber et al. Biochemistry. .

Abstract

The zinc and cobalt forms of the prototypic gamma-carbonic anhydrase from Methanosarcina thermophila were characterized by extended X-ray absorption fine structure (EXAFS) and the kinetics were investigated using steady-state spectrophotometric and (18)O exchange equilibrium assays. EXAFS results indicate that cobalt isomorphously replaces zinc and that the metals coordinate three histidines and two or three water molecules. The efficiency of either Zn-Cam or Co-Cam for CO(2) hydration (k(cat)/K(m)) was severalfold greater than HCO(3-) dehydration at physiological pH values, a result consistent with the proposed physiological function for Cam during growth on acetate. For both Zn- and Co-Cam, the steady-state parameter k(cat) for CO(2) hydration was pH-dependent with a pK(a) of 6.5-6.8, whereas k(cat)/K(m) was dependent on two ionizations with pK(a) values of 6.7-6.9 and 8.2-8.4. The (18)O exchange assay also identified two ionizable groups in the pH profile of k(cat)/K(m) with apparent pK(a) values of 6.0 and 8.1. The steady-state parameter k(cat) (CO(2) hydration) is buffer-dependent in a saturable manner at pH 8. 2, and the kinetic analysis suggested a ping-pong mechanism in which buffer is the second substrate. The calculated rate constant for intermolecular proton transfer is 3 x 10(7) M(-1) s(-1). At saturating buffer concentrations and pH 8.5, k(cat) is 2.6-fold higher in H(2)O than in D(2)O, suggesting that an intramolecular proton transfer step is at least partially rate-determining. At high pH (pH > 8), k(cat)/K(m) is not dependent on buffer and no solvent hydrogen isotope effect was observed, consistent with a zinc hydroxide mechanism. Therefore, at high pH the catalytic mechanism of Cam appears to resemble that of human CAII, despite significant structural differences in the active sites of these two unrelated enzymes.

PubMed Disclaimer

Publication types

LinkOut - more resources