Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 7;9(19):1111-4.
doi: 10.1016/s0960-9822(99)80480-1.

A retention mechanism for distribution of mitochondria during cell division in budding yeast

Affiliations
Free article

A retention mechanism for distribution of mitochondria during cell division in budding yeast

H C Yang et al. Curr Biol. .
Free article

Abstract

Mitochondria are indispensable for normal eukaryotic cell function. As they cannot be synthesized de novo and are self-replicating, mitochondria must be transferred from mother to daughter cells. Studies in the budding yeast Saccharomyces cerevisiae indicate that mitochondria enter the bud immediately after bud emergence, interact with the actin cytoskeleton for linear, polarized movement of mitochondria from mother to bud, but are equally distributed among mother and daughter cells [1] [2] [3]. It is not clear how the mother cell maintains its own supply of mitochondria. Here, we found that mother cells retain mitochondria by immobilization of some mitochondria in the 'retention zone', the base of the mother cell distal to the bud. Retention requires the actin cytoskeleton as mitochondria colocalized with actin cables in the retention zone, and mutations that perturb actin dynamics or actin-mitochondrial interactions produced retention defects. Our results support the model that equal distribution of mitochondria during cell division is a consequence of two actin-dependent processes: movement of some mitochondria into the daughter bud and immobilization of others in the mother cell.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources