Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct 29;274(44):31320-6.
doi: 10.1074/jbc.274.44.31320.

Characterization of receptor-interacting protein 140 in retinoid receptor activities

Affiliations
Free article

Characterization of receptor-interacting protein 140 in retinoid receptor activities

C H Lee et al. J Biol Chem. .
Free article

Abstract

Receptor-interacting protein 140 (RIP140) contains multiple receptor interaction domains and interacts with retinoic acid receptors in a ligand-dependent manner. Nine LXXLL receptor-interacting motifs are organized into two clusters within this molecule, each differentially interacting with retinoic acid receptor (RAR) and retinoid X receptor (RXR). RAR interacts with the 5' cluster, whereas RXR interacts with both clusters. Additionally, a third ligand-dependent receptor-interacting domain is assigned to the very C terminus of this molecule, which contains no LXXLL motif. In mammalian cells, receptor heterodimerization is required for efficient interaction of RAR/RXR with RIP140. Furthermore, the heterodimeric, holoreceptors cooperatively interact with RIP140, which requires the activation function 2 domains of both receptors. By using different retinoic acid reporter systems, it is demonstrated that RIP140 strongly suppresses retinoic acid induction of reporter activities, but coactivator SRC-1 enhances it. Furthermore, an intrinsic repressive activity of RIP140 is demonstrated in a GAL4 fusion system. Unlike receptor corepressor, which interacts with antagonist-bound RAR/RXRs, RIP140 does not interact with antagonist-occupied RAR/RXR dimers. These data suggest that RIP140 represents a third coregulator category that is able to suppress the activation of certain agonist-bound hormone receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms