Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;19(10):1136-41.
doi: 10.1097/00004647-199910000-00010.

Spectral analysis of arterial blood pressure and cerebral blood flow velocity during supine rest and orthostasis

Affiliations

Spectral analysis of arterial blood pressure and cerebral blood flow velocity during supine rest and orthostasis

C M Chern et al. J Cereb Blood Flow Metab. 1999 Oct.

Abstract

This study evaluates the effect of orthostasis on the low frequency (LF, 0.04 to 0.15 Hz) fluctuations in the blood flow velocity of the middle cerebral artery (MCAFV) in relation to its arterial blood pressure (ABP) equivalent to further define and quantify this relationship in cerebrovascular regulation. Spectral analysis was performed on 22 healthy subjects during supine rest and head-up tilt. The power in the LF range can be used to quantify the LF fluctuations, and four types of LF power data could be obtained for each individual: LF power of supine MCAFV, LF power of supine ABP, LF power of tilt MCAFV, and LF power of tilt ABP. By comparing LF power of MCAFV with LF power of ABP, two power ratios could be generated to describe the flow-pressure relationship during supine rest and head-up tilt, respectively, supine power ratio (LF power of supine MCAFV/ LF power of supine ABP) and tilt power ratio (LF power of tilt MCAFV/ LF power of tilt ABP). In addition, an index for dynamic autoregulation in response to orthostasis can be calculated from these two power ratios (tilt power ratio/supine power ratio). The authors found that this index was dependent on the extent of orthostatic MCAFV changes, and the dependency could be mathematically expressed (r = 0.61, P = .0001), suggesting its involvement in cerebrovascular regulation. Moreover, these data further support the previous observation that the LF fluctuations of MCAFV might result from modulation of its ABP equivalent, and the modulation effect could be quantified as the power ratio (LF power of MCAFV/ LF power of ABP). These observations could be an important step toward further insight into cerebrovascular regulation, which warrants more research in the future.

PubMed Disclaimer

Publication types

LinkOut - more resources