Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Oct 29;85(9):777-86.
doi: 10.1161/01.res.85.9.777.

The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease

Affiliations
Free article
Review

The myocardial Na(+)-H(+) exchange: structure, regulation, and its role in heart disease

M Karmazyn et al. Circ Res. .
Free article

Abstract

The Na(+)-H(+) exchange (NHE) is a major mechanism by which the heart adapts to intracellular acidosis during ischemia and recovers from the acidosis after reperfusion. There are at least 6 NHE isoforms thus far identified with the NHE1 subtype representing the major one found in the mammalian myocardium. This 110-kDa glycoprotein extrudes protons concomitantly with Na(+) influx in a 1:1 stoichiometric relationship rendering the process electroneutral, and its activity is regulated by numerous factors, including phosphorylation-dependent processes. There is convincing evidence that NHE mediates tissue injury during ischemia and reperfusion, which probably reflects the fact that under conditions of tissue stress, including ischemia, Na(+)-K(+) ATPase is inhibited, thereby limiting Na(+) extrusion, resulting in an elevation in [Na(+)](i). The latter effect, in turn, will increase [Ca(2+)](i) via Na(+)-Ca(2+) exchange. In addition, NHE1 mRNA expression is elevated in response to injury, which may further contribute to the deleterious consequence of pathological insult. Extensive studies using NHE inhibitors have consistently shown protective effects against ischemic and reperfusion injury in a large variety of experimental models and has led to clinical evaluation of NHE inhibition in patients with coronary artery disease. Emerging evidence also implicates NHE1 in other cardiac disease states, and the exchanger may be particularly critical to postinfarction remodeling responses resulting in development of hypertrophy and heart failure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources