Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;27(11):1309-18.

Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer

Affiliations
  • PMID: 10534317

Stereoselective metabolism of ifosfamide by human P-450s 3A4 and 2B6. Favorable metabolic properties of R-enantiomer

P Roy et al. Drug Metab Dispos. 1999 Nov.

Abstract

The anticancer prodrug ifosfamide (IFA) contains a chiral phosphorous atom and is administered clinically as a racemic mixture of R and S enantiomers. Animal model studies and clinical data indicate enantioselective differences in cytochrome P-450 (CYP) metabolism, pharmacokinetics, and therapeutic efficacy between the two enantiomers; however, the metabolism of individual IFA enantiomers has not been fully characterized. The role of CYP enzymes in the stereoselective metabolism of R-IFA and S-IFA was investigated by monitoring the formation of both 4-hydroxy (activated) and N-dechloroethyl (DCl) (inactive, neurotoxic) metabolites. In the 4-hydroxylation reaction, cDNA-expressed CYPs 3A4 and 3A5 preferentially metabolized R-IFA, whereas CYP2B6 was more active toward S-IFA. Enantioselective IFA 4-hydroxylation (R > S) was observed with six of eight human liver samples. In the N-dechloroethylation reaction, CYPs 3A4 and 2B6 both catalyzed a significantly higher intrinsic metabolic clearance (V(max)/K(m)) of S-IFA compared with R-IFA. Striking P-450 form specificity in the formation of individual DCl metabolites was evident. CYPs 3A4 and 3A5 preferentially produced (R)N2-DCl-IFA and (R)N3-DCl-IFA (derived from R-IFA and S-IFA, respectively), whereas CYP2B6 correspondingly formed (S)N3-DCl-IFA and (S)N2-DCl-IFA. In human liver microsomes, the CYP3A-specific inhibitor troleandomycin suppressed (R)N2- and (R)N3-DCl-IFA formation by >/=80%, whereas (S)N2- and (S)N3-DCl-IFA formation were selectively inhibited (>/=85%) by a CYP2B6-specific monoclonal antibody. The overall extent of IFA N-dechloroethylation varied with the CYP3A4 and CYP2B6 content of each liver, but was significantly lower for R-IFA (32 +/- 13%) than for S-IFA (62 +/- 17%, n = 8; p <.001) in all livers examined. R-IFA thus has more favorable liver metabolic properties than S-IFA with respect to less extensive N-dechloroethylation and more rapid 4-hydroxylation, indicating that R-IFA may have a distinct clinical advantage over racemic IFA.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources