Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov:202 Pt 22:3135-43.
doi: 10.1242/jeb.202.22.3135.

Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia

Affiliations

Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia

JN Boyd et al. J Exp Biol. 1999 Nov.

Abstract

Oysters are frequently exposed to severely hypoxic conditions, especially during summer months. During the summer, there are also large numbers of disease-related oyster mortalities. This research was conducted to determine whether exposure to environmental hypoxia reduces the ability of oyster hemocytes to produce reactive oxygen intermediates (ROIs), an important part of their defense system. Oysters of the species Crassostrea virginica were held in normoxic (P(O)(2)=20.0-20.7 kPa, pH 7.8-8.0) and hypoxic conditions (P(O)(2)=4.0-6.7 kPa, pH 7.1-7.4). In vivo hemolymph variables (P(O)(2), P(CO)(2) and pH) were measured after both 1 hour and 2 days in each treatment to determine the appropriate environment for subsequent hemocyte experiments. Production of reactive oxygen intermediates by hemocytes was measured using luminol-enhanced chemiluminescence (CL). During CL tests, hemocytes were held under the following conditions: air (P(O)(2)=20.7, P(CO)(2)<0.07, pH 7.6), in vivo hemolymph conditions of normoxic oysters (P(O)(2)=5.2, P(CO)(2)=0.27, pH 7.6), and in vivo hemolymph conditions of hypoxic oysters (P(O)(2)=1.47, P(CO)(2)=0.53, pH 7.1). Production of ROIs under hypoxic conditions was 33 % of that under normoxia. This decrease was the result of specific and independent effects of lower oxygen levels and decreased pH. It was not due to any direct effect of CO(2).

PubMed Disclaimer

LinkOut - more resources