Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov:10 Suppl 14:S436-40.

Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine

Affiliations
  • PMID: 10541279

Bikunin prevents adhesion of calcium oxalate crystal to renal tubular cells in human urine

S Ebisuno et al. J Am Soc Nephrol. 1999 Nov.

Abstract

Crystal-renal tubular cell interactions are important factors in crystal retention and development of kidney stones. It has been reported that human urine, especially its macromolecular fraction, distinctively prevented calcium oxalate monohydrate (COM) crystal adhesion to tubular cells. This study was designed to find and isolate a specific substance in human urine with a strong inhibitory effect against crystal adhesion. A protein from the urine was purified by two anion exchange chromatography columns and one gel filtration column. The inhibition activity for COM crystal adhesion to Madin-Darby canine kidney cells was determined quantitatively. Amino acid sequence of the protein was analyzed and then subjected to homology search in the GenBank protein database. A specific human urine protein that inhibited the COM crystal adhesion to the cells was isolated and identified. Molecular mass of the protein was approximately 35 kD. The first 20-amino acid sequence from the N-terminal of the purified protein was structurally homologous with the light chain of inter-alpha-trypsin inhibitor, also called bikunin. The isolated bikunin inhibited crystal adhesion at a minimum concentration of 10 ng/ml, and blocked completely at 200 ng/ml. It is concluded that bikunin may contribute to the regulation of crystal adhesion and retention within tubules during kidney stone formation.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources