Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 1999 Oct;128(4):539-42.
doi: 10.1007/s002210050878.

Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings

Affiliations
Case Reports

Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings

R Chen et al. Exp Brain Res. 1999 Oct.

Abstract

We investigated the nature of the silent period (SP) following transcranial magnetic stimulation by recording corticospinal volleys in a patient with implanted cervical epidural electrodes. Single suprathreshold test stimuli and paired stimuli at interstimulus intervals (ISIs) of 50-200 ms were delivered while the subject maintained a constant background contraction. The silent period duration from a single test stimulus was 357+/-62 ms. The test motor-evoked potentials were markedly reduced at all the ISIs tested. The I (indirect) waves induced by the test stimulus were largely unchanged at an ISI of 50 ms, suggesting that there was little change in motor cortex excitability. However, the corticospinal volleys, especially the late I waves, were substantially reduced at ISIs of 100 ms, 150 ms, and 200 ms. Our findings suggest that the early part of the SP is mainly due to spinal mechanisms, while the late part of the SP is related to reduced motor cortex excitability.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources