Strategies for particle design using supercritical fluid technologies
- PMID: 10542389
- DOI: 10.1016/s1461-5347(99)00209-6
Strategies for particle design using supercritical fluid technologies
Abstract
Major advances in drug delivery and targeting over recent years have highlighted the limitations of conventional particle formation and pretreatment processes in fine-tuning the characteristics required. The alternative strategy of using supercritical fluid technologies for crystal and particle engineering of pharmaceutical materials and drug delivery systems shows great promise in this area. The design of particles for specific drug delivery needs - such as particle size control or polymorphic purity - is increasingly seen as a viable option. In describing recent progress in this field, this review provides a perspective of the current position of this platform technology and considers the possibilities and challenges for future applications and developments.
Similar articles
-
Nanoparticles in the pharmaceutical industry and the use of supercritical fluid technologies for nanoparticle production.Curr Drug Deliv. 2012 May;9(3):269-84. doi: 10.2174/156720112800389052. Curr Drug Deliv. 2012. PMID: 22283656 Review.
-
Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review.Adv Drug Deliv Rev. 2018 Jun;131:22-78. doi: 10.1016/j.addr.2018.07.010. Epub 2018 Jul 17. Adv Drug Deliv Rev. 2018. PMID: 30026127 Review.
-
Supercritical Fluid Particle Design of DPI Formulations (Review).Curr Pharm Des. 2015;21(19):2516-42. doi: 10.2174/1381612821666150416100201. Curr Pharm Des. 2015. PMID: 25876911 Review.
-
Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals.Adv Drug Deliv Rev. 2008 Feb 14;60(3):399-410. doi: 10.1016/j.addr.2007.08.030. Epub 2007 Oct 5. Adv Drug Deliv Rev. 2008. PMID: 17964684 Review.
-
Tailoring Particle Microstructures via Supercritical CO₂ Processes for Particular Drug Delivery.Curr Pharm Des. 2015;21(19):2543-62. doi: 10.2174/1381612821666150416101116. Curr Pharm Des. 2015. PMID: 25876917 Review.
Cited by
-
Aerosol Delivery of siRNA to the Lungs. Part 2: Nanocarrier-based Delivery Systems.Kona. 2017;34:44-69. doi: 10.14356/kona.2017005. Epub 2016 Apr 30. Kona. 2017. PMID: 28392618 Free PMC article.
-
An atomic force microscopy study of the effect of nanoscale contact geometry and surface chemistry on the adhesion of pharmaceutical particles.Pharm Res. 2004 Jun;21(6):953-61. doi: 10.1023/b:pham.0000029283.47643.9c. Pharm Res. 2004. PMID: 15212159
-
Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications.Polymers (Basel). 2019 Apr 25;11(4):745. doi: 10.3390/polym11040745. Polymers (Basel). 2019. PMID: 31027272 Free PMC article. Review.
-
Study of poly(L-lactide) microparticles based on supercritical CO2.J Mater Sci Mater Med. 2007 Dec;18(12):2339-45. doi: 10.1007/s10856-007-3173-8. Epub 2007 Jun 14. J Mater Sci Mater Med. 2007. PMID: 17569002
-
Influence of polymorphism on the surface energetics of salmeterol xinafoate crystallized from supercritical fluids.Pharm Res. 2002 May;19(5):640-8. doi: 10.1023/a:1015358129817. Pharm Res. 2002. PMID: 12069167
LinkOut - more resources
Full Text Sources
Other Literature Sources