Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999;193(3):293-8.

[Neurosteroids: behavioral aspects and physiological implications]

[Article in French]
Affiliations
  • PMID: 10542960
Review

[Neurosteroids: behavioral aspects and physiological implications]

[Article in French]
Y Akwa et al. J Soc Biol. 1999.

Abstract

The term "neurosteroids" applies to those steroids that are both formed in the nervous system from sterol precursors, and accumulate in the nervous system, at least in part, independently of peripheral steroidogenic glands secretion. Neurosteroids that are active on the central nervous system include, mainly, pregnenolone (PREG), dehydroepiandrosterone (DHEA) and their sulfate esters (PREG-S and DHEA-S), as well as the reduced metabolite of progesterone, 3 alpha,5 alpha-TH PROG also called allopregnanolone. These neuroactive neurosteroids alter neuronal excitability by modulating the activity of several neurotransmitter receptors and thus can influence behavior. PREG-S decreases the sleeping time in rats anesthetized with a barbiturate, which is consistent with its antagonist action on the GABAA receptor (GABAA-R). Allopregnanolone is anxiolytic in rats tested in a conflict paradigm, through an interaction at a site specific for the benzodiazepine (BZ) receptor inverse agonist RO15-4513 and/or at the picrotoxinin site on GABAA-R. The contribution of the amygdala, a key region involved in the control of anxiety, is also demonstrated for the anxiolytic action of allopregnanolone. An anti-agressive effect of DHEA can be observed in castrated male mice who become agressive in the presence of lactating females. This inhibition of agressiveness by DHEA is associated to a selective decrease in the brain of PREG-S, which may, in turn, trigger an increase of endogenous GABAergic tone. Finally, cognitive performances of aged rats tested in the Morris water maze and the Y-maze can be correlated with individual concentrations of PREG-S in the hippocampus, i.e. poor performance in both tasks with low levels of PREG-S. Remarkably, the memory deficits are significantly improved, albeit transiently, by an intra-hippocampal injection of PREG-S in impaired aged rats. Promnesiant PREG-S may then reinforce some neurotransmitter systems that can decline with age. This brief review provides evidence of the pharmacology and physiological correlates of neurosteroids involved in behavioral phenomena. However, neurobiological mechanisms of behavioral effects of neurosteroids await further investigation.

PubMed Disclaimer

Similar articles

Cited by