Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 3;91(21):1876-81.
doi: 10.1093/jnci/91.21.1876.

Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters

Affiliations

Gemcitabine transport in xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters

J R Mackey et al. J Natl Cancer Inst. .

Abstract

Background: Gemcitabine, a pyrimidine analogue of deoxycytidine, is an anticancer nucleoside drug that requires functional plasma membrane nucleoside transporter proteins to reach its intracellular targets and cause cytotoxicity. Because of technical difficulties inherent in studying nucleoside transport in human cells, we rigorously defined gemcitabine membrane transportability by producing each of the available human (h) and rat (r) recombinant nucleoside transporters (NTs) individually in Xenopus laevis oocytes.

Methods: Oocytes were microinjected with in vitro-transcribed RNAs derived from complementary DNAs encoding (C = concentrative) rCNT1, rCNT2, hCNT1, hCNT2, (E = equilibrative) rENT1, rENT2, hENT1, and hENT2. Uptake of [(3)H]gemcitabine and [(14)C] uridine was measured 3 days after microinjection to determine kinetic constants. We also used the two-electrode, voltage-clamp technique to investigate the electrophysiology of hCNT1-mediated gemcitabine transport.

Results: Gemcitabine was transported by most of the tested proteins (the exceptions being the purine-selective rCNT2 and hCNT2), with the greatest uptake occurring in oocytes producing recombinant rCNT1 and hCNT1. Influxes of gemcitabine mediated by hCNT1, hENT1, and hENT2 were saturable and conformed to Michaelis-Menten kinetics with apparent K(m) values of 24, 160, and 740 microM, respectively. Gemcitabine had a limited ability to cross the lipid bilayer of oocyte membranes by simple diffusion. External application of gemcitabine to oocytes producing recombinant hCNT1 induced an inward current, which demonstrated that hCNT1 functions as a Na(+)/nucleoside co-transport protein and confirmed the transporter's ability to transport gemcitabine.

Conclusions: Mammalian nucleoside transporters vary widely in their affinity and capacity to transport gemcitabine. Variation in the tumor and tissue distribution of plasma membrane nucleoside transporter proteins may contribute to the solid tumor activities and schedule-dependent toxic effects of gemcitabine.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources