Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 1;59(21):5456-60.

Lack of involvement of ataxia telangiectasia mutated (ATM) in regulation of nuclear factor-kappaB (NF-kappaB) in human diploid fibroblasts

Affiliations
  • PMID: 10554017

Lack of involvement of ataxia telangiectasia mutated (ATM) in regulation of nuclear factor-kappaB (NF-kappaB) in human diploid fibroblasts

B P Ashburner et al. Cancer Res. .

Abstract

It has been suggested that the cellular response to exposure to ionizing radiation involves activation of the transcription factor nuclear factor-kappaB (NF-kappaB) and that this response is defective in cells from individuals with ataxia telangiectasia (AT). In one study, it was found that SV40 large T-transformed cells derived from a patient null for the AT mutated (ATM) gene exhibited constitutive activation of NF-kappaB and that in those cells, inhibition of NF-kappaB by expression of a modified form of IkappaBalpha led to correction of the radiosensitivity associated with the AT phenotype [M. Jung et al., Science (Washington DC), 268: 1691-1621, 1995]. From those data, it was suggested that NF-kappaB played a role in the AT phenotype. We show here that normal diploid cells derived from AT patients do not exhibit constitutive activation of NF-kappaB. Furthermore, we provide data that the transformation process associated with SV40 large T antigen expression in AT-/- cells leads to aberrant cellular responses. Our studies highlight the importance of using diploid, nontransformed AT-/- cells for in vitro studies relevant to the AT phenotype whenever possible.

PubMed Disclaimer

Publication types

MeSH terms