Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;8(13):2351-7.
doi: 10.1093/hmg/8.13.2351.

Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy

Affiliations

Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy

D Bühler et al. Hum Mol Genet. 1999 Dec.

Abstract

Spinal muscular atrophy (SMA) is a neurodegenerative disease of spinal motor neurons caused by reduced levels of functional survival of motor neurons (SMN) protein. SMN is part of a macromolecular complex that contains the SMN-interacting protein 1 (SIP1) and spliceosomal Sm proteins. Although it is clear that SIP1 as a component of this complex is essential for spliceosomal uridine-rich small ribonucleoprotein (U snRNP) assembly, the role of SMN and its functional interactions with SIP1 and Sm proteins are poorly understood. Here we show that the central region of SMN comprising a tudor domain facilitates direct binding to Sm proteins. Strikingly, the SMA-causing missense mutation E134K within the tudor domain severely reduced the ability of SMN to interact with Sm proteins. Moreover, antibodies directed against the tudor domain prevent Sm protein binding to SMN and abolish assembly of U snRNPs in vivo. Thus, our data show that SMN is an essential U snRNP assembly factor and establish a direct correlation between defects in the biogenesis of U snRNPs and SMA.

PubMed Disclaimer

Publication types

MeSH terms