Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999;66(1):1-16.
doi: 10.1002/(sici)1097-0290(1999)66:1<1::aid-bit1>3.0.co;2-k.

Mathematical modeling and optimization of cellulase protein production using Trichoderma reesei RL-P37

Affiliations
Comparative Study

Mathematical modeling and optimization of cellulase protein production using Trichoderma reesei RL-P37

A Tholudur et al. Biotechnol Bioeng. 1999.

Abstract

The enzyme cellulase, a multienzyme complex made up of several proteins, catalyzes the conversion of cellulose to glucose in an enzymatic hydrolysis-based biomass-to-ethanol process. Production of cellulase enzyme proteins in large quantities using the fungus Trichoderma reesei requires understanding the dynamics of growth and enzyme production. The method of neural network parameter function modeling, which combines the approximation capabilities of neural networks with fundamental process knowledge, is utilized to develop a mathematical model of this dynamic system. In addition, kinetic models are also developed. Laboratory data from bench-scale fermentations involving growth and protein production by T. reesei on lactose and xylose are used to estimate the parameters in these models. The relative performances of the various models and the results of optimizing these models on two different performance measures are presented. An approximately 33% lower root-mean-squared error (RMSE) in protein predictions and about 40% lower total RMSE is obtained with the neural network-based model as opposed to kinetic models. Using the neural network-based model, the RMSE in predicting optimal conditions for two performance indices, is about 67% and 40% lower, respectively, when compared with the kinetic models. Thus, both model predictions and optimization results from the neural network-based model are found to be closer to the experimental data than the kinetic models developed in this work. It is shown that the neural network parameter function modeling method can be useful as a "macromodeling" technique to rapidly develop dynamic models of a process.

PubMed Disclaimer

Publication types

LinkOut - more resources