Axonal neurofilaments are nonessential elements of toxicant-induced reductions in fast axonal transport: video-enhanced differential interference microscopy in peripheral nervous system axons
- PMID: 10558923
 - DOI: 10.1006/taap.1999.8780
 
Axonal neurofilaments are nonessential elements of toxicant-induced reductions in fast axonal transport: video-enhanced differential interference microscopy in peripheral nervous system axons
Abstract
Neurofilament modification and accumulation, occurring in toxicant-induced neuropathies, has been proposed to compromise fast axonal transport and contribute to neurological symptoms or pathology. The current study compares the effects of the neurotoxicants acrylamide (ACR) and 2,5-hexanedione (2,5-HD) on the quantity of fast, bidirectional vesicular traffic within isolated mouse sciatic nerve axons from transgenic mice lacking axonal neurofilaments (Eyer and Peterson, Neuron 12, 1-20, 1994) and nontransgenic littermates possessing neurofilaments. Fast anterograde and retrograde membrane bound organelle (MBO) traffic was quantitated within axons, before and after toxicant exposure, using video-enhanced differential interference contrast (AVEC-DIC) microscopy. Addition of 0.7 mM ACR to the buffer bathing the nerve produced a time-dependent reduction in bidirectional transport with a similar time to onset and magnitude in both transgenic and nontransgenic mice. 2,5-HD (4 mM) exposure reduced bidirectional vesicle traffic by a similar amount in both transgenic and nontransgenic animals. The time to onset of the transport reduction was less and the magnitude of the reduction was greater with 2,5-HD compared to ACR. A single 10-min exposure to ACR or 2,5-HD produced a similar reduction in transport to that produced by prolonged (1 h) exposure. Nonneurotoxic propionamide or 3,4-hexanedione (3,4-HD) produced no changes in bidirectional transport in either transgenic or nontransgenic animals. We conclude that ACR or 2,5-HD produces a rapid, saturable, nonreversible, neurotoxicant-specific reduction in fast bidirectional transport within isolated peripheral nerve axons. These actions are mediated through direct modification of axonal component(s), which are independent of toxicant-induced modifications of, or accumulations of, neurofilaments.
Copyright 1999 Academic Press.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
