Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;89(1-2):185-8.
doi: 10.1016/s0925-4773(99)00209-9.

The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver, intestine and pancreas

Affiliations
Free article

The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver, intestine and pancreas

F M Rausa et al. Mech Dev. 1999 Dec.
Free article

Abstract

During organogenesis, the winged helix hepatocyte nuclear factor 3beta (HNF-3beta) protein participates in regulating gene transcription in the developing esophagus, trachea, liver, lung, pancreas, and intestine. Hepatoma cell transfection studies identified a critical HNF-3beta promoter factor, named UF2-H3beta, and here, we demonstrate that UF2-H3beta is identical to the fetoprotein transcription factor (FTF). In situ hybridization studies of mouse embryos demonstrate that FTF expression initiates in the foregut endoderm during liver and pancreatic morphogenesis (day 9) and that earlier expression of FTF is observed in the yolk sac endoderm, branchial arch and neural crest cells (day 8). Abundant FTF hybridization signals are observed throughout morphogenesis of the liver, pancreas, and intestine and its expression continues in the epithelial cells of these adult organs. In day 17 mouse embryos and adult pancreas, however, expression of FTF becomes restricted to the exocrine acinar and ductal epithelial cells.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources