Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1999 Nov;87(5):1668-73.
doi: 10.1152/jappl.1999.87.5.1668.

Eccentric exercise markedly increases c-Jun NH(2)-terminal kinase activity in human skeletal muscle

Affiliations
Free article
Clinical Trial

Eccentric exercise markedly increases c-Jun NH(2)-terminal kinase activity in human skeletal muscle

M D Boppart et al. J Appl Physiol (1985). 1999 Nov.
Free article

Abstract

Eccentric contractions require the lengthening of skeletal muscle during force production and result in acute and prolonged muscle injury. Because a variety of stressors, including physical exercise and injury, can result in the activation of the c-Jun NH(2)-terminal kinase (JNK) intracellular signaling cascade in skeletal muscle, we investigated the effects of eccentric exercise on the activation of this stress-activated protein kinase in human skeletal muscle. Twelve healthy subjects (7 men, 5 women) completed maximal concentric or eccentric knee extensions on a KinCom isokinetic dynamometer (10 sets, 10 repetitions). Percutaneous needle biopsies were obtained from the vastus lateralis muscle 24 h before exercise (basal), immediately postexercise, and 6 h postexercise. Whereas both forms of exercise increased JNK activity immediately postexercise, eccentric contractions resulted in a much higher activation (15.4 +/- 4.5 vs. 3.5 +/- 1.4-fold increase above basal, eccentric vs. concentric). By 6 h after exercise, JNK activity decreased back to baseline values. In contrast to the greater activation of JNK with eccentric exercise, the mitogen-activated protein kinase kinase 4, the immediate upstream regulator of JNK, was similarly activated by concentric and eccentric exercise. Because the activation of JNK promotes the phosphorylation of a variety of transcription factors, including c-Jun, the results from this study suggest that JNK may be involved in the molecular and cellular adaptations that occur in response to injury-producing exercise in human skeletal muscle.

PubMed Disclaimer

Publication types

Substances