Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;87(5):1990-5.
doi: 10.1152/jappl.1999.87.5.1990.

Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle

Affiliations
Free article

Chronic activation of 5'-AMP-activated protein kinase increases GLUT-4, hexokinase, and glycogen in muscle

B F Holmes et al. J Appl Physiol (1985). 1999 Nov.
Free article

Abstract

This study was designed to determine whether chronic chemical activation of AMP-activated protein kinase (AMPK) would increase glucose transporter GLUT-4 and hexokinase in muscles similarly to periodic elevation of AMPK that accompanies endurance exercise training. The adenosine analog, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), has previously been shown to be taken up by cells and phosphorylated to form a compound (5-aminoimidazole-4-carboxamide ribonucleotide) that mimics the effect of AMP on AMPK. A single injection of AICAR resulted in a marked increase in AMPK in epitrochlearis and gastrocnemius/plantaris muscles 60 min later. When rats were injected with AICAR (1 mg/g body wt) for 5 days in succession and were killed 1 day after the last injection, GLUT-4 was increased by 100% in epitrochlearis muscle and by 60% in gastrocnemius muscle in response to AICAR. Hexokinase was also increased approximately 2. 5-fold in the gastrocnemius/plantaris. Gastrocnemius glycogen content was twofold higher in AICAR-treated rats than in controls. Chronic chemical activation of AMPK, therefore, results in increases in GLUT-4 protein, hexokinase activity, and glycogen, similarly to those induced by endurance training.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources