Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov-Dec;10(6):1068-74.
doi: 10.1021/bc990072j.

New class of polymers for the delivery of macromolecular therapeutics

Affiliations

New class of polymers for the delivery of macromolecular therapeutics

H Gonzalez et al. Bioconjug Chem. 1999 Nov-Dec.

Abstract

Cationic polymers show promise for the in vitro and in vivo delivery of macromolecular therapeutics. Known cationic polymers, e.g., poly(L)lysine (PLL) and polyethylenimine (PEI), have been employed in native and modified forms for the delivery of plasmid DNA (pDNA) and reveal varying levels of toxicity. Here, we report the preparation of a new class of cationic polymers that are specifically designed to deliver macromolecular therapeutics. Linear, cationic, beta-cyclodextrin (beta-CD)-containing polymers (CD-polymers) are synthesized by copolymerizing difunctionalized beta-CD monomers (AA) with other difunctionalized comonomers (BB) such that an AABBAABB product is formed. The beta-CD polymers are able to bind approximately 5 kbp pDNA above polymer to DNA (+/-) charge ratios of 1.5, compact the bound pDNA into particles of approximately 100-150 nm in size at charge ratios above 5+/-, and transfect cultured cells at charge ratios above 10+/-. In vitro transfections with the new beta-CD-polymers are comparable to the best results obtained in our hands with PEI and Lipofectamine. Some cell line-dependent toxicities are observed for serum-free transfections; however, no toxicity is revealed at charge ratios as high as 70+/- in transfections conducted in 10% serum. Single IV and IP doses as high as 200 mg/kg in mice showed no mortalities.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources