Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;277(5):H1690-700.
doi: 10.1152/ajpheart.1999.277.5.H1690.

Role of voltage-sensitive release mechanism in depression of cardiac contraction in myopathic hamsters

Affiliations

Role of voltage-sensitive release mechanism in depression of cardiac contraction in myopathic hamsters

S E Howlett et al. Am J Physiol. 1999 Nov.

Abstract

We investigated excitation-contraction (EC) coupling in isolated ventricular myocytes from prehypertrophic cardiomyopathic (CM) hamster hearts. Conventional and voltage-clamp recordings were made with high-resistance microelectrodes, and cell shortening was measured with a video-edge detector at 37 degrees C. Contractions were depressed in myocytes from CM hearts, whether they were initiated by action potentials or voltage-clamp steps. As in guinea pig and rat, contraction in hamster myocytes could be triggered by a voltage-sensitive release mechanism (VSRM) or Ca(2+)-induced Ca(2+) release (CICR). Selective activation of these mechanisms demonstrated that the defect in EC coupling was primarily caused by a defect in the VSRM. However, activation and inactivation properties of the VSRM were not altered. When the VSRM was inhibited, the remaining contractions induced by CICR exhibited identical bell-shaped contraction voltage relations in normal and CM myocytes. Inward Ca(2+) current was unchanged. Thus a defect in the VSRM component of EC coupling precedes the development of hypertrophy and failure in CM hamster heart.

PubMed Disclaimer

Publication types

LinkOut - more resources