Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;84(6):1137-50.
doi: 10.1017/s0958067099018953.

Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

Affiliations

Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle

C J de Ruiter et al. Exp Physiol. 1999 Nov.

Abstract

The purpose of the present study was to investigate the effect of temperature on the rates of isometric force development and relaxation in electrically activated fresh and fatigued human adductor pollicis muscle. Following immersion of the lower arm for 20 min in water baths of four different temperatures, muscle temperatures were approximately 37, 31, 25 and 22 C. Maximal isometric force was reduced by 16.8 +/- 1.5 % at 22 C. The stimulation frequency-force and -rate of force development relationships were shifted to the left at lower temperatures. Q10 values for the maximal rates of force development and relaxation, and the times for 100 to 50 % and 50 to 25 % force relaxation, were about 2.0 between 37 and 25 C and about 3.8 between 25 and 22 C. However, the time for 50 to 25 % force relaxation had a relatively high Q10 value between 25 and 22 C (6.9) and this parameter also appeared to be more sensitive to fatigue compared to the other indices of relaxation. Nevertheless, the effect of fatigue on all parameters decreased with cooling over the entire (37-22 C) temperature range.

PubMed Disclaimer