Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1999 Nov 1;71(21):4800-7.
doi: 10.1021/ac990448m.

Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot

Affiliations
Comparative Study

Toward a clinical molecular scanner for proteome research: parallel protein chemical processing before and during western blot

W V Bienvenut et al. Anal Chem. .

Abstract

To increase the throughput of protein identification and characterization in proteome studies, we investigated three methods of performing protein digestion in parallel. The first, which we term "one-step digestion-transfer" (OSDT), is based on protein digestion during the transblotting process. It involves the use of membranes containing immobilized trypsin which are intercalated between the gel and a PVDF collecting membrane. During electrotransfer, some digestion of the transferred proteins occurs, although poorly for basic and/or high molecular weight proteins. The second method is based on "in-gel" digestion of all proteins in parallel and termed "parallel in-gel digestion" (PIGD) to denote this fact. The PIGD led to more efficient digestion of basic and high molecular weight proteins (> 40,000) but suffered from a major drawback: loss of resolution for low molecular weight polypeptides (< 60,000) through diffusion during the digestion process. The third method examined was the combination of PIGD and OSDT procedures. This combination, called "double parallel digestion" (DPD), led to greatly improved digestion of high molecular weight and basic proteins without losses of low molecular weight polypeptides. Peptides liberated during transblotting of proteins through the immobilized trypsin membrane were trapped on a PVDF membrane and identified by mass spectrometry in scanning mode.

PubMed Disclaimer

Publication types

LinkOut - more resources