Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 26;274(48):34141-7.
doi: 10.1074/jbc.274.48.34141.

Overexpression of cyclooxygenase-2 induces cell cycle arrest. Evidence for a prostaglandin-independent mechanism

Affiliations
Free article

Overexpression of cyclooxygenase-2 induces cell cycle arrest. Evidence for a prostaglandin-independent mechanism

O C Trifan et al. J Biol Chem. .
Free article

Abstract

The immediate-early gene cyclooxygenase 2 (Cox-2) is induced in a variety of hyperplastic pathological conditions, including rheumatoid arthritis and colorectal cancer. Although a causal role for Cox-2 has been proposed, mechanisms by which Cox-2 function contributes to the pathogenesis of hyperplastic disease are not well defined. We constructed a green fluorescent protein-tagged Cox-2 (Cox-2-GFP) to examine its effects on a variety of cell types upon overexpression. Subcellular localization and enzymatic and pharmacological properties of Cox-2-GFP polypeptide were indistinguishable from those of the wild-type Cox-2 polypeptide. Overexpression of the Cox-2-GFP or the Cox-2 polypeptide by transient transfection suppressed the population of cells in the S phase of the cell cycle, with a concomitant increase in G(0)/G(1) population. In contrast, transient overexpression of GFP had no effect on cell cycle distribution, whereas endoplasmic reticulum-retained GFP (GFP-KDEL) overexpression was associated with only a minor decrease of cells in S phase. Interestingly, neither NS-398 (a Cox-2-specific inhibitor) nor indomethacin could reverse the effect of Cox-2-GFP overexpression on cell cycle progression. Furthermore, two mutants of Cox-2, S516Q and S516M, which lack the cyclooxygenase activity, exhibited the same effect as Cox-2-GFP. The cell cycle effect of Cox-2-GFP was observed in ECV-304, NIH 3T3, COS-7, bovine microvascular endothelial cells, and human embryonic kidney 293 cells. These findings suggest that Cox-2 inhibits cell cycle progression in a variety of cell types by a novel mechanism that does not require the synthesis of prostaglandins.

PubMed Disclaimer

Publication types

MeSH terms