Purinergic modulation of Na(+),K(+),Cl(-) cotransport and MAP kinases is limited to C11-MDCK cells resembling intercalated cells from collecting ducts
- PMID: 10568792
- DOI: 10.1007/s002329900599
Purinergic modulation of Na(+),K(+),Cl(-) cotransport and MAP kinases is limited to C11-MDCK cells resembling intercalated cells from collecting ducts
Abstract
We demonstrated recently that in renal epithelial cells from collecting ducts of Madin-Darby canine kidneys (MDCK), Na(+),K(+), Cl(-) cotransport is inhibited up to 50% by ATP via its interaction with P(2Y) purinoceptors (Biochim. Biophys. Acta 1998. 1369:233-239). In the present study we examined which type of renal epithelial cells possesses the highest sensitivity of Na(+),K(+),Cl(-) cotransport to purinergic regulation. We did not observe any effect of ATP on Na(+),K(+),Cl(-) cotransport in renal epithelial cells from proximal and distal tubules, whereas in renal epithelial cells from rabbit and rat collecting ducts ATP decreased the carrier's activity by approximately 30%. ATP did not affect Na(+),K(+),Cl(-) cotransport in C7 subtype MDCK cells possessing the properties of principal cells but led to approximately 85% inhibition of this carrier in C11-MDCK cells in which intercalated cells are highly abundant. Both C7- and C11-MDCK exhibited ATP-induced IP(3) and cAMP production and transient elevation of [Ca(2+)](i). In contrast to the above-listed signaling systems, ATP-induced phosphorylation of ERK and JNK MAP kinases was observed in C11-MDCK only. Thus, our results reveal that regulation of renal Na(+),K(+),Cl(-) cotransport by P(2Y) receptors is limited to intercalated cells from collecting ducts and indicate the involvement of the MAP kinase cascade in purinergic control of this ion carrier's activity.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous