Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;56(5):1788-97.
doi: 10.1046/j.1523-1755.1999.00745.x.

Increased proximal tubular cholesterol content: implications for cell injury and "acquired cytoresistance"

Affiliations
Free article

Increased proximal tubular cholesterol content: implications for cell injury and "acquired cytoresistance"

R A Zager et al. Kidney Int. 1999 Nov.
Free article

Abstract

Background: Acute renal failure (ARF) leads to secondary adaptive changes that serve to protect proximal tubules from subsequent ischemic or toxic damage [so-called "acquired cytoresistance" (CR)]. A characteristic of CR is increased plasma membrane resistance to attack. Therefore, this study sought to identify potential changes in plasma membrane lipid composition in CR tubules/renal cortex and, if present, to test whether they might mechanistically contribute to the CR state.

Methods: Renal cortices/isolated tubules were obtained from CR mouse kidneys (18-hr postinduction of ischemia reperfusion, myoglobinuria, or ureteral obstruction). Their plasma membrane phospholipid/cholesterol profiles were compared with those observed in either control tissues or tissues obtained one to two hours post-renal damage (that is, prior to emergence of CR).

Results: Either no changes or inconsistent changes in phospholipid profiles were observed in CR tissues. Conversely, CR (vs. control) tissues demonstrated a consistent 25 to 50% increase in membrane cholesterol content. To ascertain whether cholesterol impacts tubule susceptibility to injury, its levels were reduced in proximal tubule (HK-2) cells with either (a) mevastatin, (b) a cholesterol "stripping" agent, (c) cholesterol oxidase, or (d) cholesterol esterase. Then cell susceptibility to injury [adenosine 5'-triphosphate (ATP) depletion; Fe-mediated oxidant stress] was assessed. In each instance, cholesterol reductions dramatically sensitized to superimposed injury (for example, a 2 to 3 times increase in the % of lactate dehydrogenase release). When cholesterol levels were restored to normal in CR tubules (with a "stripping" agent), an increased tubule susceptibility to injury resulted. Because cholesterol decreases membrane fluidity, the impact of a membrane-fluidizing agent (A2C) on cell injury was assessed. A2C dramatically sensitized HK-2 cells to superimposed attack.

Conclusions: ARF leads to an up-regulation of proximal tubule cholesterol content. The latter may then contribute to acquired CR, possibly by stabilizing the plasma membrane via its antifluidizing effect.

PubMed Disclaimer

Publication types