Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;20(2):171-82.
doi: 10.1046/j.1365-313x.1999.00588.x.

A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants

Affiliations
Free article

A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants

T Arazi et al. Plant J. 1999 Oct.
Free article

Abstract

All organisms require a minimal amount of metal ions to sustain their metabolism, growth and development. At the same time, their intrinsic metal-uptake systems render them vulnerable to toxic levels of metals in the biosphere. Using radiolabeled recombinant calmodulin as a probe to screen a tobacco cDNA library, we have discovered a protein designated NtCBP4 (Nicotiana tabacum calmodulin-binding protein) that can modulate plant tolerance to heavy metals. Structurally, NtCBP4 is similar to vertebrate and invertebrate K+ and to non-selective cation channels, as well as to recently reported proteins from barley and Arabidopsis. Here we report on the subcellular localization of NtCBP4 and the phenotype of transgenic plants overexpressing this protein. The localization of NtCBP4 in the plasma membrane was manifested by fractionating tobacco membranes on sucrose gradients or by aqueous two-phase partitioning, and subsequently using immunodetection. Several independent transgenic lines expressing NtCBP4 had higher than normal levels of NtCBP4. These transgenic lines were indistinguishable from wild type under normal growth conditions. However, they exhibited improved tolerance to Ni2+ and hypersensitivity to Pb2+, which are associated with reduced Ni2+ accumulation and enhanced Pb2+ accumulation, respectively. To our knowledge this is the first report of a plant protein that modulates plant tolerance or accumulation of Pb2+. We propose that NtCBP4 is involved in metal uptake across the plant plasma membrane. This gene may prove useful for implementing selective ion tolerance in crops and improving phytoremediation strategies.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Associated data

LinkOut - more resources