Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Oct;29(5):473-87.
doi: 10.1023/a:1006540607594.

Relative reactivity of ribosyl 2'-OH vs. 3'-OH in concentrated aqueous solutions of phosphoimidazolide activated nucleotides

Collaborators, Affiliations

Relative reactivity of ribosyl 2'-OH vs. 3'-OH in concentrated aqueous solutions of phosphoimidazolide activated nucleotides

A Kanavarioti et al. Orig Life Evol Biosph. 1999 Oct.

Abstract

Phosphoimidazolide activated ribomononucleotides (*pN, see structure) are useful substrates for the non-enzymatic synthesis of oligonucleotides. In the presence of metal ions, aqueous solutions of *pN yield primarily the two internucleotide-linked (pN2' pN and pN3' pN) and the pyrophosphate-linked (N5' ppN) dimers. Small amounts of cyclic dimers and higher oligomers are also produced. In this study the relative reactivity of 2'-OH vs. 3'-OH was determined from the ratio of the yields of pN2' pN vs. pN3' pN. Experiments were performed at 23 degrees C in the range 7.2 < or = pH < or = 8.4 with substrates that differ in nucleobase (guanosine (G), cytidine (C), uridine (U), and adenosine (A)) and leaving group (imidazole (Im), 2-methylimidazole (2-MeIm) and 2,4-dimethylimidazole (2,4-diMeIm)). Two metal ions (Mg2+ or Mn2+) were employed as catalysts. The conditions used here, i.e. a substrate concentration in the range 0.1 M to 1.0 M and metal ion concentration in the range 0.05 M to 0.2 M, favor base-stacking interactions. The ratio pN2' pN: pN3' pN = 2'-5': 3'-5' was found independent of nucleobase and typically varied between 2 to 3 indicating that the 2'-OH is about 2 to 3 times more reactive than the 3'-OH. *pN with Im, compared to 2-MeIm and 2,4-diMeIm leaving group, produce lower yields of internucleotide linked dimers, and a higher pN2' pN: pN3' pN ratio. Trends in the data, observed with all three leaving groups, suggest an increase in pN2' pN: pN3' pN ratio with decreasing substrate concentration (up to 5.47 with 0.051 M ImpG). The observations are in accord with earlier studies reporting a relative reactivity 2'-5': 3'-5' = 6 to 9 obtained with Im as the leaving group, in dilute nucleotide solutions and under conditions that disfavor stacking. It is speculated that the concentration induced change in the relative reactivity is the result of self-association via base-stacking that enhances selectively the proximity of the 3'-OH of one molecule to the reactive P-N bond of an other molecule. The implication of these conclusions for oligomerization/ligation reactions is discussed.

PubMed Disclaimer

References

    1. J Org Chem. 1995 Feb 10;60(3):632-7 - PubMed
    1. J Am Chem Soc. 1996 Apr 10;118(14):3340-4 - PubMed
    1. J Am Chem Soc. 1976 Oct 27;98(22):7037-9 - PubMed
    1. J Mol Evol. 1998 Jun;46(6):622-32 - PubMed
    1. Tetrahedron. 1968 Dec;24(24):6987-93 - PubMed

Publication types

LinkOut - more resources