Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 3;274(49):34758-64.
doi: 10.1074/jbc.274.49.34758.

Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon

Affiliations
Free article

Mammalian TOR controls one of two kinase pathways acting upon nPKCdelta and nPKCepsilon

D Parekh et al. J Biol Chem. .
Free article

Abstract

There are three conserved phosphorylation sites in protein kinase C (PKC) isotypes that have been termed priming sites and play an important role in PKC function. The requirements and pathways involved in novel (nPKC) phosphorylation have been investigated here. The evidence presented for nPKCdelta shows that there are two independent kinase pathways that act upon the activation loop (Thr-505) and a C-terminal hydrophobic site (Ser-662) and that the phosphorylation of the Ser-662 site is protected from dephosphorylation by the Thr-505 phosphorylation. Both phosphorylations require C1 domain-dependent allosteric activation of PKC. The third site (Ser-643) appears to be an autophosphorylation site. The serum-dependent phosphorylation of the Thr-505 and Ser-662 sites increases nPKCdelta activity up to 80-fold. Phosphorylation at the Ser-662 site is independently controlled by a pathway involving mammalian TOR (mTOR) because the rapamycin-induced block of its phosphorylation is overcome by co-expression of a rapamycin-resistant mutant of mTOR. Consistent with this role of mTOR, amino acid deprivation selectively inhibits the serum-induced phosphorylation of the Ser-662 site in nPKCdelta. It is established that nPKCepsilon behaves in a manner similar to nPKCdelta with respect to phosphorylation at its C-terminal hydrophobic site, Ser-729. The results define the regulatory inputs to nPKCdelta and nPKCepsilon and establish these PKC isotypes downstream of mTOR and on an amino acid sensing pathway. The multiple signals integrated in PKC are discussed.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources