Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1979 Feb 9;566(2):259-65.
doi: 10.1016/0005-2744(79)90029-9.

Thyroid purine nucleoside phosphorylase. II. Kinetic model by alternate substrate and inhibition studies

Thyroid purine nucleoside phosphorylase. II. Kinetic model by alternate substrate and inhibition studies

J D Carlson et al. Biochim Biophys Acta. .

Abstract

Nucleoside analog inhibition studies have been conducted on thyroidal purine nucleoside phosphorylase (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) which catalyzed an ordered bi-bi type mechanism where the first substrate is inorganic phosphate and the last product is ribose 1-phosphate. Heterocyclic- and carbohydrate-modified nucleoside inhibitors demonstrate mixed type inhibition suggesting such analogs show an affinity (Ki) for the free enzyme. A kinetic model is proposed which supports the observed inhibition patterns. These studies together with alternate substrate studies indicate that nucleoside binding requires a functional group capable of hydrogen bonding at the 6-position of the purine ring and that the orientation of the bound substrate may be syn. Proper geometry of the phosphate is dependent upon the 3'-substituent to the orientated below the furanose ring. The 5'-hydroxyl group is required for substrate activity. The proposed rate limiting step of the phosphorylase mechanism is the enzymatic protonation of the 7-N position of the nucleoside.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources