Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 10;274(50):35950-4.
doi: 10.1074/jbc.274.50.35950.

Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules

Affiliations
Free article

Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules

D Georgellis et al. J Biol Chem. .
Free article

Abstract

In Escherichia coli, changes in redox condition of growth are sensed and signaled by the Arc two-component system. This system consists of ArcB as the membrane-associated sensor kinase and ArcA as the cytoplasmic response regulator. ArcB is a tripartite kinase, possessing a primary transmitter, a receiver, and a secondary transmitter domain that catalyzes the phosphorylation of ArcA via a His --> Asp --> His --> Asp phosphorelay, as well as the dephosphorylation of ArcA-P by a reverse phosphorelay. When ArcA and ArcB were incubated with ATP, the peak levels of phosphorylated proteins increased in the presence of the fermentation metabolites D-lactate, acetate, or pyruvate. In this study, we report that these effectors accelerate the autophosphorylation activity of ArcB and enhance the transphosphorylation of ArcA, but have no effect on the dephosphorylation of ArcA-P. Moreover, the presence of the receiver domain of ArcB is essential for the effectors to influence the autophosphorylation rate of the primary transmitter domain of ArcB.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources