The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell
- PMID: 10585931
- PMCID: PMC1300580
- DOI: 10.1016/S0006-3495(99)77140-7
The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell
Abstract
The deformation of an initially spherical vesicle of radius a with a permeable membrane under extensive forces applied at its poles is calculated as a function of the in-plane shear modulus, H, and the out-of-plane bending modulus, B, using an axisymmetric theory that is valid for large deformations. Suitably nondimensionalized, the results depend upon a single nondimensional parameter, C identical with a(2)H/B. For small deformations, the calculated force-polar strain curves are linear and, under these conditions, the slope of the curve determines only C, not the values of H and B separately. Independent determination of H and B from experimental measurements require deformations that are large enough to produce nonlinear behavior. Simple approximations for large and small C are given, which are applied to experimental measurements on red blood cell ghosts that have been made permeable by treatment with saponin.
Similar articles
-
Remodeling the shape of the skeleton in the intact red cell.Biophys J. 1996 Feb;70(2):1036-44. doi: 10.1016/S0006-3495(96)79649-2. Biophys J. 1996. PMID: 8789122 Free PMC article.
-
A tethered adhesive particle model of two-dimensional elasticity and its application to the erythrocyte membrane.Biophys J. 1996 Feb;70(2):857-67. doi: 10.1016/S0006-3495(96)79628-5. Biophys J. 1996. PMID: 8789103 Free PMC article.
-
An elastic network model based on the structure of the red blood cell membrane skeleton.Biophys J. 1996 Jan;70(1):146-66. doi: 10.1016/S0006-3495(96)79556-5. Biophys J. 1996. PMID: 8770194 Free PMC article.
-
Structure and deformation properties of red blood cells: concepts and quantitative methods.Methods Enzymol. 1989;173:3-35. doi: 10.1016/s0076-6879(89)73003-2. Methods Enzymol. 1989. PMID: 2674613 Review.
-
Red blood cell deformability, membrane material properties and shape: regulation by transmembrane, skeletal and cytosolic proteins and lipids.Semin Hematol. 1993 Jul;30(3):171-92. Semin Hematol. 1993. PMID: 8211222 Review.
Cited by
-
Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.Biophys J. 1999 Dec;77(6):3085-95. doi: 10.1016/S0006-3495(99)77139-0. Biophys J. 1999. PMID: 10585930 Free PMC article.
-
Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells.Chembiochem. 2019 Oct 15;20(20):2666-2673. doi: 10.1002/cbic.201900167. Epub 2019 Oct 1. Chembiochem. 2019. PMID: 31087814 Free PMC article.
-
Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction.Biophys Rev. 2019 Oct;11(5):765-782. doi: 10.1007/s12551-019-00599-y. Epub 2019 Oct 14. Biophys Rev. 2019. PMID: 31612379 Free PMC article. Review.
-
Nanomechanical characterization of red blood cells using optical tweezers.J Mater Sci Mater Med. 2008 Apr;19(4):1529-35. doi: 10.1007/s10856-008-3382-9. Epub 2008 Jan 24. J Mater Sci Mater Med. 2008. PMID: 18214643
-
In vitro investigation of the mechanics of fixed red blood cells based on optical trap micromanipulation and image analysis.Biomed Opt Express. 2024 May 16;15(6):3783-3794. doi: 10.1364/BOE.523702. eCollection 2024 Jun 1. Biomed Opt Express. 2024. PMID: 38867786 Free PMC article.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials