Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1999 Nov 30;85(1):1-8.
doi: 10.1016/s0167-0115(99)00025-7.

Structure-activity relationships of adrenomedullin in the circulation and adrenal gland

Affiliations
Review

Structure-activity relationships of adrenomedullin in the circulation and adrenal gland

H C Champion et al. Regul Pept. .

Abstract

Adrenomedullin (ADM) is a recently discovered vasoactive peptide that has potent vasodilator activity in the pulmonary and peripheral vascular beds and has significant effects on endocrine function. ADM is a member of the CGRP/amylin superfamily of peptides based largely on the presence of the six-membered ring structure and C-terminal amidation that is highly conserved in this family. Proadrenomedullin is a 185 amino acid precursor with enzymatic cleavage sites for both ADM and a unique 20 amino acid peptide named proadrenomedullin N-terminal 20 peptide (PAMP). ADM and PAMP are found in a variety of organ systems, and plasma levels of the peptides are increased in pathophysiologic conditions. Both peptides have hypotensive and vasodilator activity in the pulmonary and regional vascular beds and have significant effects on the endocrine system, including the adrenal gland. ADM (15-52), which retains the six-membered ring structure, maintains the vasodilator activity of ADM, suggesting that the 14 amino acid N-terminal extension is not necessary for the full agonist activity. However, analogs, such as ADM-(22-52) and ADM-(40-52), which do not contain the six-member ring structure, lack agonist activity. Unlike the full-sequence peptide, hADM-(15-22) and ADM-(16-21), which contain the ring structure, increase systemic arterial pressure in the rat but not in the cat. The present review discusses the structure-activity relationship for the actions of ADM and related peptides and discusses the mechanisms which mediate responses to these widely distributed peptides.

PubMed Disclaimer

Similar articles

Cited by

  • Molecular Mechanisms of Class B GPCR Activation: Insights from Adrenomedullin Receptors.
    Garelja ML, Au M, Brimble MA, Gingell JJ, Hendrikse ER, Lovell A, Prodan N, Sexton PM, Siow A, Walker CS, Watkins HA, Williams GM, Wootten D, Yang SH, Harris PWR, Hay DL. Garelja ML, et al. ACS Pharmacol Transl Sci. 2020 Feb 26;3(2):246-262. doi: 10.1021/acsptsci.9b00083. eCollection 2020 Apr 10. ACS Pharmacol Transl Sci. 2020. PMID: 32296766 Free PMC article.

Publication types

LinkOut - more resources