Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 1;216(1):340-7.
doi: 10.1006/dbio.1999.9505.

Hepatocyte growth factor (HGF) receptor expression and role of HGF during embryonic mouse testis development

Affiliations
Free article

Hepatocyte growth factor (HGF) receptor expression and role of HGF during embryonic mouse testis development

G Ricci et al. Dev Biol. .
Free article

Abstract

The hepatocyte growth factor (HGF) receptor, c-met, transduces the HGF multiple biological activities. During embryonic development the system HGF/c-met regulates the morphogenesis of different organs and tissues. In this study we examined c-met gene expression during mouse testis development and, by means of Northern blot and in situ hybridization, we report the receptor expression pattern. C-met expression is not detectable in male genital ridges isolated from embryos at 11.5 days postcoitum (dpc). In testes isolated from 12.5 and 13.5 dpc, c-met expression is detectable and essentially localized in the developing cords. Male genital ducts do not express c-met at the reported ages, whereas female ducts appear c-met positive. Moreover, we report that HGF is able to induce testicular morphogenesis in vitro. Male genital ridges isolated from embryos at 11.5 dpc are morphologically nonorganized. Culturing 11.5 dpc urogenital ridges in the presence of HGF we obtained testis organization and testicular cord formation. Our data demonstrate that c-met is expressed during the beginning period of testis differentiation and that HGF is able to support testicular differentiation in vitro. All these data indicate that this growth factor, besides its role as mitogenic factor, plays a fundamental role during testicular cord formation probably inducing cell migration and/or cell differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources