Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov;5(11):3352-6.

Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin

Affiliations
  • PMID: 10589744

Rapid activation of MDR1 gene expression in human metastatic sarcoma after in vivo exposure to doxorubicin

A Abolhoda et al. Clin Cancer Res. 1999 Nov.

Abstract

Overexpression of P-glycoprotein (Pgp), a multidrug transporter encoded by the MDR1 gene, is associated with chemoresistance in some human solid tumor malignancies. To date, analyses of MDR1 levels in solid tumors have examined constitutive increases in expression at relapse. In the present study, we have evaluated the acute induction of MDR1 gene expression in a solid human tumor as a function of time in response to in vivo exposure to chemotherapy. Five patients with unresectable sarcoma pulmonary metastases underwent isolated single lung perfusion with doxorubicin. Relative MDR1 gene expression was measured in metastatic tumor nodules and normal lung specimens after initiation of chemoperfusion. In four of five patients, a 3-15-fold (median, 6.8) increase in MDR1 RNA levels was detected in tumors at 50 min after administration of doxorubicin. In contrast, normal lung samples had very low levels of MDR1 RNA prior to perfusion, and no acute increases were observed after therapy. These findings demonstrate, for the first time, that MDR1 gene expression can be rapidly activated in human tumors after transient in vivo exposure to cytotoxic chemotherapy.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources