Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Nov 30;123(2):85-103.
doi: 10.1016/s0009-2797(99)00123-4.

The mycotoxin patulin induces intra- and intermolecular protein crosslinks in vitro involving cysteine, lysine, and histidine side chains, and alpha-amino groups

Affiliations

The mycotoxin patulin induces intra- and intermolecular protein crosslinks in vitro involving cysteine, lysine, and histidine side chains, and alpha-amino groups

R Fliege et al. Chem Biol Interact. .

Abstract

As previous studies have indicated a multiple electrophilic reactivity of patulin (PAT) towards simple thiol nucleophiles, we have methodically investigated the ability of PAT to covalently crosslink proteins in vitro. By means of sodium dodecylsulphate polyacrylamide gel electrophoresis, the formation of PAT-induced intermolecular protein-protein crosslinks was clearly demonstrated for bovine serum albumin containing one thiol group per molecule, but also for the thiol-free hen egg lysozyme. Characterization of the crosslink sites was carried out by (1) modulation of the thiol groups with N-ethylimaleimide and 2-iminothiolane; (2) comparison with various known crosslinking agents, i.e. phenylenedimaleimide, glutardialdehyde, and dimethylsuberimidate, and (3) fluorescence incorporation studies using dansyl-labeled amino acids and a fluorescent glutathione derivative. The thiol group of cysteine was preferred for PAT-mediated crosslink reactions, but the side chains of lysine and histidine, and alpha-amino groups also exhibited reactivity. PAT can act both as a homobifunctional as well as a heterobifunctional crosslinking agent. The initial formation of a monoadduct with a thiol group appears to activate PAT for the subsequent reaction with an amino group, but also leads to rapid loss of further electrophilic properties when no second nucleophile for crosslink completion is available. Studies using microtubule proteins as a protein with experimentally controllable quarternary structure and a proposed cellular target for PAT toxicity emphasized the influence of specific sterical conditions on crosslink formation at low protein concentrations. Non-polymerized microtubule proteins, i.e. tubulin alpha,beta-dimers, formed a defined product with PAT consisting of an intramolecularly crosslinked beta-tubulin, whereas guanosine triphosphate- or paclitaxel-induced polymerization to microtubule-like quarternary structures prior to treatment with PAT gave rise to intermolecular crosslink formation between alpha- and beta-tubulin. In contrast, denaturated tubulin yielded none of those two new protein species, but only unspecific intramolecular crosslinks and highly crosslinked aggregates. Thus, in addition to the amino acid composition, the tertiary and quarternary superstructures of proteins appear to markedly influence their reactivity towards PAT. Under appropriate conditions, the generation of protein crosslinks could easily be observed at concentrations of PAT equal to or even below the concentration of the protein. The relevance of these novel reaction pathways of PAT demonstrated in vitro for its in vivo mechanisms of toxicity remains to be investigated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources