Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 20;265(2):330-41.
doi: 10.1006/viro.1999.0042.

Efficient rescue of infectious bursal disease virus from cloned cDNA: evidence for involvement of the 3'-terminal sequence in genome replication

Affiliations
Free article

Efficient rescue of infectious bursal disease virus from cloned cDNA: evidence for involvement of the 3'-terminal sequence in genome replication

H J Boot et al. Virology. .
Free article

Abstract

To study the mechanism of replication of infectious bursal disease virus (IBDV), and to determine factors on the IBDV RNA which are involved in viral replication, we used cloned full-length cDNA of both the A- and B-segments to generate infectious IBDV. Infectious IBDV was rescued from plasmids that contained full-length IBDV cDNA behind a T7 promoter, by transfecting these plasmids into cells which were infected with a recombinant Fowlpox virus that expressed T7 RNA polymerase. By using the cDNA transfection system we evaluated the effect of the length of the 3' terminus of the A-segment plus strand of IBDV. Although wild-type IBDV predominantly contains four cytosines at the 3' terminus, no difference in virus yield was found when virus was rescued from cDNAs containing three to six adjacent cytosines. When the 3' terminus was shorter than three cytosines the efficiency to generate infectious IBDV from cDNA was reduced, but IBDV could still be recovered reproducibly. The rescued viruses from cDNAs containing 3'-terminal deletions appeared to have a restored 3'-terminal sequence. The missing nucleotides are probably restored by using complementary bases of a stem-loop structure as template.

PubMed Disclaimer

MeSH terms

Associated data

LinkOut - more resources