Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;277(6):C1100-10.
doi: 10.1152/ajpcell.1999.277.6.C1100.

CFTR upregulates the expression of the basolateral Na(+)-K(+)-2Cl(-) cotransporter in cultured pancreatic duct cells

Affiliations

CFTR upregulates the expression of the basolateral Na(+)-K(+)-2Cl(-) cotransporter in cultured pancreatic duct cells

H Shumaker et al. Am J Physiol. 1999 Dec.

Abstract

The purpose of the current experiments was 1) to assess basolateral Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) expression and 2) to ascertain the role of cystic fibrosis transmembrane conductance regulator (CFTR) in the regulation of this transporter in a prototypical pancreatic duct epithelial cell line. Previously validated human pancreatic duct cell lines (CFPAC-1), which exhibit physiological features prototypical of cystic fibrosis, and normal pancreatic duct epithelia (stable recombinant CFTR-bearing CFPAC-1 cells, termed CFPAC-WT) were grown to confluence before molecular and functional studies. High-stringency Northern blot hybridization, utilizing specific cDNA probes, confirmed that NKCC1 was expressed in both cell lines and its mRNA levels were twofold higher in CFPAC-WT cells than in CFPAC-1 cells (P < 0.01, n = 3). Na(+)-K(+)-2Cl(-) cotransporter activity, assayed as the bumetanide-sensitive, Na(+)- and Cl(-)-dependent NH(+)(4) entry into the cell (with NH(+)(4) acting as a substitute for K(+)), increased by approximately 115% in CFPAC-WT cells compared with CFPAC-1 cells (P < 0.01, n = 6). Reducing the intracellular Cl(-) by incubating the cells in a Cl(-)-free medium increased Na(+)-K(+)-2Cl(-) cotransporter activity by twofold (P < 0.01, n = 4) only in CFPAC-WT cells. We concluded that NKCC1 is expressed in pancreatic duct cells and mediates the entry of Cl(-). NKCC1 activity is enhanced in the presence of an inward Cl(-) gradient. The results further indicate that the presence of functional CFTR enhances the expression of NKCC1. We speculate that CFTR regulates this process in a Cl(-)-dependent manner.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources