Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec;277(6):F926-33.
doi: 10.1152/ajprenal.1999.277.6.F926.

Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney

Affiliations

Afferent arteriolar adenosine A2a receptors are coupled to KATP in in vitro perfused hydronephrotic rat kidney

L Tang et al. Am J Physiol. 1999 Dec.

Abstract

Adenosine is known to exert dual actions on the afferent arteriole, eliciting vasoconstriction, by activating A1 receptors, and vasodilation at higher concentrations, by activating lower-affinity A2 receptors. We could demonstrate both of these known adenosine responses in the in vitro perfused hydronephrotic rat kidney. Thus, 1.0 microM adenosine elicited a transient vasoconstriction blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), and 10-30 microM adenosine reversed KCl-induced vasoconstriction. However, when we examined the effects of adenosine on pressure-induced afferent arteriolar vasoconstriction, we observed a third action. In this setting, a high-affinity adenosine vasodilatory response was observed at concentrations of 10-300 nM. This response was blocked by both 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3, 5]triazin-5-yl-amino]ethyl)phenol (ZM-241385) and glibenclamide and was mimicked by 2-phenylaminoadenosine (CV-1808) (IC50 of 100 nM), implicating adenosine A2a receptors coupled to ATP-sensitive K channels (KATP). Like adenosine, 5'-N-ethylcarboxamidoadenosine (NECA) elicited both glibenclamide-sensitive and glibenclamide-insensitive vasodilatory responses. The order of potency for the glibenclamide-sensitive component was NECA > adenosine = CV-1808. Our findings suggest that, in addition to the previously described adenosine A1 and low-affinity A2b receptors, the renal microvasculature is also capable of expressing high-affinity adenosine A2a receptors. This renal adenosine receptor elicits afferent arteriolar vasodilation at submicromolar adenosine levels by activating KATP.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources