Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Dec 5;265(1):20-34.
doi: 10.1006/viro.1999.0038.

The refined crystal structure of cowpea mosaic virus at 2.8 A resolution

Affiliations
Free article

The refined crystal structure of cowpea mosaic virus at 2.8 A resolution

T Lin et al. Virology. .
Free article

Abstract

Comoviruses are a group of plant viruses in the picornavirus superfamily. The type member of comoviruses, cowpea mosaic virus (CPMV), was crystallized in the cubic space group I23, a = 317 A and the hexagonal space group P6(1)22, a = 451 A, c = 1038 A. Structures of three closely similar nucleoprotein particles were determined in the cubic form. The roughly 300-A capsid was similar to the picornavirus capsid displaying a pseudo T = 3 (P = 3) surface lattice. The three beta-sandwich domains adopt two orientations, one with the long axis radial and the other two with the long axes tangential in reference to the capsid sphere. T = 3 viruses display one or the other of these two orientations. The CPMV capsid was permeable to cesium ions, leading to a disturbance of the beta-annulus inside a channel-like structure, suggesting an ion channel. The hexagonal crystal form diffracted X rays to 3 A resolution, despite the large unit cell. The large ( approximately 200 A) solvent channels in the lattice allow exchange of CPMV cognate Fab fragments. As an initial step in the structure determination of the CPMV/Fab complex, the P6(1)22 crystal structure was solved by molecular replacement with the CPMV model determined in the cubic cell.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources